东恒文档网
当前位置 首页 >范文大全 > 专题范文 >

北师大版小学数学五年级上册教案9篇

发布时间:2023-07-17 13:50:02 来源:网友投稿

北师大版小学数学五年级上册教案第1篇教学内容:教材第14~15页。教学目标:1、在实践活动中认识奇数和偶数,了解奇偶性的规律。2、探索并掌握数的奇偶性,并能应用数的奇偶性分析和解释生活中一些简单问题。下面是小编为大家整理的北师大版小学数学五年级上册教案9篇,供大家参考。

北师大版小学数学五年级上册教案9篇

北师大版小学数学五年级上册教案 第1篇

教学内容:

教材第14~15页。

教学目标:

1、在实践活动中认识奇数和偶数,了解奇偶性的规律。

2、探索并掌握数的奇偶性,并能应用数的奇偶性分析和解释生活中一些简单问题。

3、通过本次活动,让学生经历猜想、实验、验证的过程,结合学习内容,对学生进行思想教育,使学生体会到生活中处处有数学,增强学好数学的信心和应用数学的意识。

教学重点:

探索并理解数的奇偶性

教学难点:

能应用数的奇偶性分析和解释生活中一些简单问题

教学过程:

一、游戏导入,感受奇偶性

1、游戏:换座位

首先将全班39个学生分成6组,人数分别为4、5、6、7、8、9。我们大家来做个换位置的游戏:要求是只能在本组内交换,而且每人只能与任意一个人交换一次座位。

(游戏后学生发现4人、6人、8人一组的均能按要求换座位,而5人、7人、9人一组的却有一人无法跟别人换座位)

2、讨论:为什么会出现这种情况呢?

学生能很直观的找出原因,并说清这是由于4、6、8恰好是双数,都是2的倍数;而5、7、9是单数,不是2的倍数。

(此时学生议论纷纷,正是引出偶数、奇数的时机)

3、小结:交换位置时两两交换,有的小组刚好都能换位置,像4、6、8、10……是2的倍数,这样的数就叫做偶数;而有的小组有人不能与别人换位置,像5、7、9……不是2的倍数,这样的数就叫做奇数。

学生相互举例说说怎样的数是奇数,怎样的数是偶数。

二、猜想验证,认识奇偶性

活动1

(1)出示题目和情景图:小船最初在南岸,从南岸驶向北岸,再从北岸驶向南岸,不断往返。

(2)提出问题:小船摆渡11次后,船在南岸还是北岸?为什么?

(3)探究活动

学生可能会运用数的方法得出结果,不一定正确。

师:小船摆渡100次后,船在南岸还是北岸?你会怎样做?能保证正确吗?

引导学生运用策略:①列表法;②画示意图法。

三、实践操作、应用奇偶性

我们已经知道了奇偶数的一些特性,现在要用这些特性解决我们身边经常发生的问题。

1、试一试

(1)一个杯子,杯口朝上放在桌上,翻动一次,杯口朝下。翻动两次,杯口朝上……翻动10次呢?翻动19次?105次?请尝试说明理由。

学生动手操作,发现规律:奇数次朝下,偶数次朝上。

师:把杯子换成硬币,你能提出类似的问题吗?

(2)有3个杯子,全部杯口朝上放在桌上,每次翻动其中的两只杯子,能否经过若干次翻转,使得3个杯子全部杯口朝下?

你手上只有一个杯子怎么办?(学生:小组合作)

学生开始动手操作。

反馈:有一小部分学生说能,但是上台展示,要么违反规则,要么无法进行下去。

引导感受:如果我们分析一下每次翻转后杯口朝上的杯子数的奇偶性,就会发现问题的所在。

学生动手操作,尝试发现

交流:一开始杯口朝上的杯子是3只,是奇数;第一次翻转后,杯口朝上的变为1只,仍是奇数;再继续翻转,因为只能翻转两只杯子,即只有两只杯子改变了上、下方向,所以杯口朝上的杯子数仍是奇数。由此可知:无论翻转多少次,杯口朝上的杯子数永远是奇数,不可能是偶数。也就是说,不可能使3只杯子全部杯口朝下。

学生再次操作,感受过程,体验结论。

2、活动2

出示两组数:圆中的数有什么特点?正方形中的数有什么特点?

(1)学生独立猜想,完成“试一试”,小组内汇报交流,然后统一意见进行验证(要求:验证时多选几组进行证明)。

如果两个数相减呢?如果是连加或连减呢?

汇报成果:

(1)奇数﹢奇数=偶数

(2)奇数-奇数=偶数

(3)奇数+奇数+……+奇数=奇数(奇数个)

偶数+偶数=偶数偶数-偶数=偶数奇数+奇数+……+奇数=偶数(偶数个)

奇数+偶数=奇数奇数-偶数=奇数偶数+偶数+……+偶数=偶数

你能举几个例子说明一下吗?

(学生的举例可以引导从正反两个角度进行)

(2)运用判断下列算式的结果是奇数还是偶数。

10389 + 20**:,46786-5787:,11231+2557+3379+105:

11387 + 131:,60075-997:,335+7757+223+66789+73:

268 + 1024:,9876-5432:,2+4+6+8+10……+998+1000:

3、游戏。规则如下:用骰子掷一次,得到一个点数,以A点为起点,连续走两次,转到哪一格,那一格的奖品就归你。谁想上来参加?

学生跃跃欲试……如果继续玩下去有中奖的可能吗?谁不想参加呢?为什么?

生:骰子始终在偶数区内,不管掷的是几,加起来总是偶数,不可能得到奖品。

是呀,这是老师在街上看到的一个,他就是利用了数的奇偶性专门骗小孩子上当,现在你有什么想法?

学生自由说。

四、课堂小结,课后延伸。

1、说说我们这节课探索了什么?你发现了什么?

2、那如果是4个杯子全部杯口朝上放在桌上,每次翻动其中的3只杯子,能否经过若干次翻转,使得4个杯子全部杯口朝下?最少几次?

北师大版小学数学五年级上册教案 第2篇

【教学目标】

1、能正确估计不规则图形面积的大小。

2、能用数格子的方法,计算不规则图形的面积。

【重点难点】

能用数格子的方法,计算不规则图形的面积。

【教学准备】

课件

【教学过程】

一、开门见山,揭示课题

在现实生活中,学生将接触到大量的不规则图形的面积问题,本节课我们就来学习估计、计算不规则图形的面积。

二、探索新知

本探索活动分为三个部分,前两个部分主要是呈现了小华出生时与2岁时两个不同年龄段脚印面积的大小,第三个部分是让学生运用自己探究出的方法,估计自己的脚印面积。在开展实践活动时,可以按照教材前后呈现的内容,先讨论估计小华两个年龄段脚印面积的大小,然后采用数格子的方法(不满一格的可以按半格来数)来验证前面的估计值。通过两个年龄段脚印大小的估计,要让学生理解成长期中脚印面积的大小与年龄的增长有着密切的关系。

估计自己脚印的面积可以回家完成,然后将所描好的脚印图带到学校进行交流。教学时,教师还可以找一幅公园或某个活动场所的平面图,利用方格纸估算这幅平面图形的面积,再组织同学交流。

如果有些班级的学生能力较强,也可以补充一些没有方格背景的不规则图形面积的估计与计算。学生在估计与计算这些图形的面积时,首先要会把这个图形看作近似的基本图,并围一围,随后用尺量一量基本图的相关条件的尺寸,并计算面积。

板书设计:成长的脚印

北师大版小学数学五年级上册教案 第3篇

单元导学

本单元的主要内容有:比较图形的面积;
认识平行四边形、三角形与梯形的底和高;
平行四边形、三角形和梯形的面积计算方法;
解决有关面积计算的实际问题。

多边形的面积是《数学课程标准》图形与几何领域中的重要内容,也是本册教材的重点和难点知识,是小学生应该掌握的.一项基本技能。

学生在以前的学习过程中已经初步认识了长方形、正方形、三角形、平行四边形和梯形,学习了面积与面积单位及长方形、正方形的面积等有关知识,初步感受了解决有关图形面积计算问题的思维方式,即用面积单位去度量一个图形的面积。本单元在此基础上展开图形面积计算公式的探索,解决有关图形面积与组成图形要素之间的数量关系的问题。

备内容

比较图形的面积(1课时)→比较图形面积大小的基本方法;
体验图形形状的变化与面积大小变化的关系

认识底和高(1课时)→认识平行四边形、三角形、梯形的底和高;
会用三角尺画平行四边形、三角形与梯形的高;
能画出指定底和高的平行四边形、三角形与梯形

多边形的面积

探索活动:平行四边形的面积(2课时)→探索平行四边形面积的计算公式;
运用平行四边形面积的计算公式解决实际问题

探索活动:三角形的面积(2课时)→探索三角形面积的计算公式;
运用三角形面积的计算公式解决实际问题

探索活动:梯形的面积(1课时)→探索梯形面积的计算公式;
运用梯形面积的计算公式解决实际问题

备目标

知识与技能

1.借助方格纸直接判断图形面积的大小,初步体验数方格及割补法在图形面积探索中的应用。

2.认识平行四边形、三角形、梯形的底和高,会用三角尺画平行四边形、三角形与梯形的高。

3.掌握平行四边形、三角形、梯形面积的计算公式。

过程与方法

1.通过动手操作、实验观察等活动,体验图形形状变化与面积大小变化关系,发展空间观念。

2.经历利用割补、转化等方法探索图形面积计算公式的过程,理解并掌握平行四边形、三角形和梯形的面积计算公式,体验转化的数学思想。

情感、态度与价值观

1.在数学活动中,培养学生的创新意识。

2.在具体的操作探究活动中体验学习数学的乐趣。

3.在探索图形面积的计算公式的过程中,获得成功探索问题的体验。

备重难点

重点

1.认识平行四边形、三角形、梯形的底和高,会用三角尺画平行四边形、三角形与梯形的高。

2.掌握平行四边形、三角形、梯形面积的计算公式。

难点

1.能画出平行四边形、三角形、梯形的高。

2.运用平行四边形、三角形和梯形的面积计算公式解决实际问题。

北师大版小学数学五年级上册教案 第4篇

教材分析:

本课的知识属于“数论”的范畴,这些知识的学习是后面学习约分、通分的基矗对于“质数”和“合数”的概念比较抽象,学生不易理解,学习有一定的困难。教材按前一节“找因数”的编写思路编写本课,用小正方形拼长方形的方法,引导学生认识质数与合数。

教学目标:

1.在用小正方形拼长方形的活动中,经历探索质数与合数的过程,理解质数与合数的意义;

2.能正确判断一个数是质数或合数;

3.在研究质数的过程中丰富对数学发展的认识,感受数学发展的文化魅力;

4.在猜想——验证——概括——理解的过程中体会学习数学的乐趣,积累数学学习的方法。

教学重点:

理解质数与合数的意义。

教学难点:

能正确判断一个数是质数还是合数,体会数学学习的方法。

教学学情:

学生已经有了利用小正方形拼摆长方形找因数的经历,为本节课再次通过小正方形拼摆长方形找质数的学习打下了良好基础,只是学生的思维水平还存在一定的差距,在学习的过程中还会出现快慢之分。

教法学法:

新课标指出,教师只是学生学习活动组织者,引导着,合作者,因此在本课中,我主要采用引导发和趣味法进行教学,以求限度的调动学生学习的积极性。而学生则主要采用动手操作法、观察分析法和讨论法进行学习掌握新知的。

教学过程:

本课的教学设计是在充分尊重教材编写的基础上有所创新,力求体现新的教学理念与思想。在此,我主要采用的是趣味教学法。

学生的认知活动将受课堂情绪因素的影响,宽松,活跃,和谐的教学氛围能成为学生大胆探索,勇于创新的催化剂所以本节可,我的设计主要体现在一个字—趣。

一、课前导入互动。

我与学生做了个猜年龄的游戏。老师今年30岁,有个学生的年龄是老师年龄的因数,问这个学生可能有多大?通过这个游戏拉近了师生的距离,并且在学生猜年龄的过程中通过找30的因数,需要调动头脑中

关于因数的知识,也为今天的学习做了很好的知识铺垫。

二、新课呈现

在新课教学中,我以做拼图游戏引入,先让学生分别用2个,4个和12个小正方形拼长方形,看看可以分别拼成几个长方形。在学生说出结果后提出质疑“是不是小正方形的个数越多,拼成的长方形个数就越多呢?”在学生给出否定的回答后,再让学生通过举反例加以论证。然后再抛出一个问题:“那与什么有关呢?”让学生进行猜想,当学生说出与因数个数有关时,接着让小组合作,分别摆出由2—12个小正方形组成长方形并填写书上表格(课件出示)在学生完成表格后,在引导学生观察表格思考:(ppt出示)

1、观察上表格各因数,你会有什么发现;

2、结合你的发现将2—12各数按因数进行分类并说说这两类数分别有什么特点。(这点可以不说,直接出示),

然后让学生自学书本,看看数学上把具有这类特点的数分别叫什么数。从而达到理解这一概念的目的。(这一环节让学生经历了猜想—验证—概括—理解的学习过程,是学生对质数、合数的概念达到理解的目的。)

三、练习

在练习部分,老师先出示1—100的表格,(课件出示)让学生说说他是如何判断一个数是质数还是合数的,引导学生学以致用,会用概念去判断。在教知识的同时也交给了学生学习的方法。在学生兴致勃勃的对这些数进行判断时,是迅速抛出:“1,是质数吗?”这一问题引出学生的争论,将课堂用一次推向高潮。接着让学生根据标准的不同对自然数进行分类,从而能使学生很自然的把奇数与偶数、质数与合数加以区分。(这也是引导学生自主构建知识体系的一个重要环节,学生自己探究的知识,其乐趣溢于言表。)接着我有设计了难易程度不同的练习题以适应不同学习层次的学生的需求。

总之,整堂课以学生为主题,教师为主导,通过引导学生“’猜想—验证—概括—理解”的学习过程,建构自己的知识体系,积累了数学学习的方法,丰富了学生的情感体验,激发了今后学习数学的兴趣与动力。

四、小节

让学生畅谈收获与体会。

北师大版小学数学五年级上册教案 第5篇

教学目标:

1、会估算不规则图形的面积,

2、掌握几种估算的方法,培养学生的估算意识。

教学过程:

一、新知:

1、教师出示课件与问题:小华出生时,脚印的面积约是多少?

2、学生自己先独立进行估计,然后小组内进行交流。

3、小组推荐人员进行全班交流。

小组1:我们是用数格子的方法来进行计算的,我先数了数整个格子的大约是11个,其他不够一个格子的我进行了拼补,这样大约是17cm2。

小组2:我们的方法也是这样的,我们把不满一格的按照一格进行计算,这样大约是18cm2。

3、师:归纳一下同学们的做法,基本上都是利用数格子的方法进行估计的。同学们还有没有其他的做法?

生1:我把这个脚印看成了近似的长方形,长6厘米,宽3厘米,所以面积是3×6=18(cm2)。(学生在实物投影前画出他看的近似图形,学生们表示认可)

生2:我有个不同的方法,我是看成了近似的梯形,上底是2厘米,下底是3厘米,高是7厘米,根据梯形的面积公式,即(2+3)×7÷2=17、5(cm2)。这样和生1的差不多。

师:回顾一下刚才大家都用了什么方法。

生1:我们用了数一数的方法。

生2:我们把这个脚印看成一个近似图形进行计算。

二、练习

1、用练习纸估计自己的脚印有多大,同桌互相检查。

2、P78的练一练

先独立估计,在交流方法。

3、实践活动:怎样计算出树叶的面积?

先讨论,在交流做法,回家之后独立完成。

三、小结。

北师大版小学数学五年级上册教案 第6篇

教学目标:

1.结合具体实例,从观察、讨论、操作的活动中,经历判断图形平移和在方格纸上按要求将图形平移的过程。

2.能在方格纸上按水平或垂直方向将简单图形平移。

3.在画图活动中,积累图形运动的思维经验,发展空间观念。

教学重点:能在方格纸上按水平或垂直方向将简单图形平移。

教学难点:积累图形平移的思维经验,发展空间观念。

教学准备:

教学课件。

教学过程

学生活动

(二次备课)

一、情境导入

1.课件出示生活中的一些平移现象。

师:同学们,知道课件中呈现的是一些什么现象吗?

引导学生说出:

(1)第一幅图:国旗上升的过程是平移。

(2)第二幅图:柜子上的推拉门的运动是平移。

(3)第三幅图:缆车的运动是平移。

2.师:在以前我们学过生活中的一些平移现象,你能用手做一做平移吗?

学生用手做平移。

3.师:原来我们都是研究生活中的平移现象,今天我们要从数学的角度来深入研究图形的平移。(板书课题:平移)

二、预习反馈

点名让学生汇报预习情况。(重点让学生说说通过预习本节课要学习的内容,学到了哪些知识,还有哪些不明白的地方,有什么问题)

三、探索新知

1.描述小旗的运动。

出示一面小旗向右平移

6

格后的图形,请学生描述小旗是怎样运动的。

生1:小旗平移了6格(不完整)。

生2:小旗向右平移了6格。

2.尝试画出小旗向左平移

4

格后得到的图形。

(1)学生讨论怎样画。

不同的学生讨论出的方法不一样,教师要根据学生的汇报引导学生总结出两方面的内容:一是怎样找到图形平移后的位置,二是怎样使画出的图形和原来的图形一样。

(2)引导学生质疑。

师:怎样找出4格的位置?

引导学生找到解决问题的办法:先在小旗上确定一个点,然后把这个点向左平移4格,做上记号。

师:找到点不一定能画出和原来的图形一样的图形,你有什么好办法来解决这个问题?

引导学生总结出:确定点后还要看原来图形中每条线段的长度各是多少格。

(3)学生尝试画图。老师巡视,发现问题及时解决。

(4)展示学生作品,说说自己是怎么画的,并引导总结。

找到图形上所有的关键点,把关键点按照要求平移后,再顺次连接各点。

(5)引导学生讨论。

笑笑移动后的结果怎么和淘气的结果不一样?

学生讨论后汇报:笑笑将小旗向左平移了7格。

3.尝试画出小旗向上平移4格后得到的图形。

(1)独立操作,展示交流。

(2)指名说一说是怎么画的。

生1:先确定一个点,把这个点向上平移4格,再从平移后的点开始,照原图画好。

生2:我先找出小旗的关键点,然后把这些关键点向上平移4格,最后连线。

(3)观察比较,汇报发现:

生1:平移运动前后,图形的大小没变。

生2:平移前后,图形的形状没变。

生3:平移前后,图形的位置变了。

4.小船的平移。

(1)出示题目,学生独立尝试。

(2)巡视后展示学生两种不同的画法。

生1的画法:两次平移都是把原图平移。

生2的画法;
第二次平移是把第一次平移后的图形再平移。

(3)让生对比哪一种对?

为什么?

生:我同意第二种画法。我认为从两个字可以看出,一个“先”,另一个是“再”,这两个关键字说明第二次平移是在第一次平移的基础上进行平移,这里有一个先后的过程。

5.两次平移时要注意什么?

要认真分析判断,第二次平移是把谁平移,这是关键。

四、巩固练习

1.完成教材第26页“练一练”第

1

题。

独立操作,展示交流。并和同伴说说自己是怎样画的。

2.完成教材第26页“练一练”第

2

题。

同桌先互相说说,再独立完成,集体订正。

五、拓展提升

画出下面图形先向上平移5格,再向右平移8格后的图形。

六、课堂小结

这节课我们学习了什么?在画平移后的图形的时候要注意什么?

七、作业布置

教材第26页“练一练”第3、4题。

学生初步辨别生活中的平移现象。

学生根据课件中的图片,作出相应的平移的动作。

教师根据学生预习的情况,有侧重点地调整教学方案。

学生说一说,初步描述平移,从不完整到完整。

学生总结图形平移的方法与步骤。

引导学生总结规律。

学生讨论小结,老师概括。

板书设计

平移

确定点→平移点→照原图画好

大小和形状不能改变。

教学反思

成功之处:本节课主要让学生进一步认识图形的平移,掌握简单图形的平移画法。在教学中要让学生参与到学习中来,引导学生在自主探索、小组合作讨论中体会平移的特点和画法。

不足之处:对平移几格,有些学生判定方法不对,错误地认为是两图之间的空格。

教学建议:给学生提供充分从事数学活动的机会,让学生参与到这个活动中,体验成功,建立自信,激发学生学习数学的兴趣。

北师大版小学数学五年级上册教案 第7篇

教学内容:义务教育课程标准实验教科书北师大版数学五年级上册第14-15页。

教学目标:

1、使学生尝试运用“列表”、“画示意图”等方法发现规律,运用数的奇偶性解决生活中的一些简单问题。

2、让学生经历探索加法运算中数的奇偶性变化的过程,发现数的奇偶性的变化规律。

3、在活动中培养等毛生的观察、推理和归纳能力。

4、学生通过自主探索发现规律,感受数学内在的魅力,培养学生学习数学的兴趣。

教学重点:探索数的奇偶性变化规律。

教具学具准备:数字卡片,盒子,奖品。

教学过程:

复习引入新课。(通过引导学生回忆、提问或列举等形式,复习奇、偶数的意义。)

活动1:数的奇偶性在生活中的应用。

(一)激趣导入。

清早,笑笑第一个走进了教室,像往常一样把门打开后就去开灯,结果灯未亮,于是,他自言自语地说了声“停电了”就走到座位上坐下。不一会儿,同学们陆陆续续来到了教室,看到教室里光线有些暗,都下意识地伸手去按电灯开关,却都像笑笑一样无奈地走回自己的座位。你知道第11个同学按过开关后,“开关”是打开的还是关闭了?

(二)自主探究,发现规律。

1、学生独立思考后进行汇报交流。

方法:用文字列举出开、关的情况

开、关;开、关;开、关;开、关;开、关;开、关……

让学生数数,直观地发现第11个人按过开关后,开关是打开的。

2、增加人次,深入探究。

如果是第47个同学或第60个同学进去,用列举的方法判断“开关”的开、关情况还方便吗?你还能想出什么好方法?

3、第二次汇报交流。

投影下表:

用列表的方法启发学生总结规律并作答:当人数是1、3、5、7……的时候,开关处于开启状态,而当人数是2、4、6、8……的时候,开关处于关闭状态。即,进来的是奇数个同学时,开关被打开;进来的是偶数个同学时,开关被关闭。因为47是奇数,开关被打开;108是偶数,开关被关闭。

(三)巩固应用。

1、看书学习并解决小船的靠岸问题。

2、解决杯子上下翻转,杯口的朝向问题。

3、举例说说数的奇偶性还能解决哪些生活问题?

(四)活动小结。

当一个事物只有两种(运动或变化)状态时,运动奇数次后,状态与初始状态相反,运动偶数次时,状态与初始状态相同。

活动2:探索奇、偶数相加的规律。

(一)有奖游戏。

1、出示分别装有奇数卡片和偶数卡片的两个盒子。宣布游戏规则:从自己喜欢的盒子里任意抽取两张卡片,如果卡片上两个数的和为奇数,你就可以领取一份奖品。

2、游戏开始。部分学生按规则抽取卡片,并将卡片上两个数相加的算式及得数写在黑板上。上来的同学无一人获奖。

3、引发思考。

师:是你们运气不好,还是其中隐藏着什么秘密?想一想:如果继续抽下去,你们有获奖的可能吗?

4、发现规律。

学生观察黑板上的算式,很快发现其中的“秘密”:两个奇数相加和是偶数;两个偶数相加和也是偶数。如此抽取卡片,永远无法获奖。

5、举例验证。

6、修改游戏规则。

(1)师:现在同学们已经发现了不能获奖的原因了,那么,你能不能修改游戏规则,保证你们能够获奖呢?

(新规则:在两个盒子里各抽出一张卡片,两张卡片上数的`和是奇数可获奖。)

(2)请学生按修改后的规则试抽几次,并发奖以资鼓励。

(3)举例验证:奇数+偶数=奇数

(二)总结奇、偶数相加的规律。

奇数+奇数=偶数、偶数+偶数=偶数、奇数+偶数=奇数。

(三)应用规律解决问题。

1、不计算,判断下列算式的结果是奇数还是偶数。

10389+20** 11387+131 268+1024

2、把5颗糖(全部)分给两个小朋友,能否使每个小朋友都分到偶数颗糖?奇数颗呢?结果是什么?

全课小结:说说这节课有什么收获?

北师大版小学数学五年级上册教案 第8篇

教学目标:

1、了解“鸡兔同笼”问题,感受古代数学问题的趣味性。

2尝试用不同的方法解决“鸡兔同笼”问题,使学生体会假设法和代数法德一般性。

3在解决问题的过程中培养学生的逻辑思维能力。

教学重点:

感受古代数学问题的趣味性。

教学难点:

用不同的方法解决问题。

教学准备:

课件

教学程序:

一、激趣导入

师:咱班同学家里有养鸡的吗?有养兔的吗?既养鸡又养兔的有吗?把鸡和兔放在同一个笼子里养的有吗?在我国古代就有人把鸡和兔放在同一个笼子里养,正因为这样,在我国历才出现了一道非常有名的数学问题,是什么问题呢?你们想知道吗?这节课我们就共同来研究大约产生于一千五百年前,一直流传至今的“鸡兔同笼”问题。

师:关于“鸡兔同笼”问题以前你们有过一些了解吗?流传至今有一千五百多年的问题,是什么样呢?想知道吗?

二、探索新知

1(课件示:书中112页情境图)

师:同学们看这就是《孙子算经》中的鸡兔同笼问题。

这里的“雉”指的是什么,你们知道吗?这道题是什么意思呢?谁能试着说一说?

生:试述题意。(笼子里有鸡和兔,从上面数有35个头,从下面数有94只脚。问鸡兔各几只?)

师:正像同学们说的,这道题的意思是笼子里有若干只鸡和兔,从上面数有35各头,从下面数有94只脚。问鸡和兔各有几只?

师:从题中你发现了那些数学信息?

生:笼子里有鸡和兔共35只,脚一共有94只。

生:这题中还隐含着鸡有2只脚,兔有4只脚这两个信息。

师:根据这些数学信息你们能解决这个问题吗?这道题的数据是不是太大了?咱们把它换成数据小一点的相信同学们就能解决了。

2、出示例一(课件示例一)

题目:笼子里有若干只鸡和兔,从上面数有8个头,从下面数有26只脚,鸡和兔各有几只?

师:谁来读读这个问题。

谁能流利的读一遍?

请同学们轻声读题,看看题里告诉我们什么信息,要解决什么问题?

生:读题

师:现在就请你来解决这个问题,你想怎样解决?把你的想法和小组内的同学说一说。

生:我想我能猜出来。一次猜不对,多猜几次就能猜对。

师:按你的意思就是随意的猜,为了不重复,不遗漏,我们可以列表按顺序推算。(板书:列表法)

师:还有其他方法吗?

生:我想用方程法也能解决。(板书:方程法)

生:要是笼子里光有鸡或光有兔就好算了,可这笼子里却有两种动物,我还没想好怎么算。

师:那我们就不妨按笼子里只有鸡或只有兔来思考,假设笼子里全是鸡或全是兔,看脚数会有什么变化,说不定从中你们就能找到解题的思路呢。(板书:假设法)

师:还有别的方法吗?那这些方法行不行呢?下面就请同学们以小组为单位,对你们感兴趣的方法进行尝试验证一下吧。

生:在小组内尝试各种方法。

师:经过上面的研究学习,你们都尝试运用了哪种方法呢?下面以小组为单位进行汇报。

生1:我们小组用列表法找到了答案,有3只鸡,5只兔。

师:把你们研究的结果拿来让大家看看。这样按顺序推算,对于数据小的问题解决起来很方便,不过一旦数据比较大,比如笼子里的鸡和兔有100只,200只,甚至更多,再用这样的办法怎么样?

生:很麻烦。

师:是啊,那要花费很长时间。哪个小组还想汇报?

生:我们小组用方程法计算的。(生说计算过程,师板书过程。)

师:我们看这个方程列得是否正确?4X表示什么?2(8—X)表示的是什么?兔脚数+鸡脚数=什么?这就是列这个方程所依据的数量关系。谁能把这个数量关系完整的说一遍?

生:说数量关系。(鸡脚数+兔脚数=26只脚)

师:根据这个数量关系你能想到另两个数量关系吗?

生:叙述另外两个数量关系。(26只脚—鸡脚数=兔脚数,26只脚—兔脚数=鸡脚数)

根据这两个数量关系你又能列出哪两个方程呢?

生:汇报师板书两方程。

师:除了可以设兔有X只,还可以怎样设?

生:还可以设鸡有X只。那兔就有(8—X)只。

师:对,那根据什么数量关系你又能列出怎样的方程呢?

生:汇报,根据鸡脚数+兔脚数=26只能列出方程2X+4(8—X)=26

根据26只脚—鸡脚数=兔脚数能列出26—2X=4(8—X)

根据26只脚—兔脚数=鸡脚数能列出26—4(8—X)=2X

师:同学们看根据不同的数量关系我们能列出这么多的方程,但是同学们要注意用方程法解决问题时必须要找准数量关系。

师:除了这两种方法,假设法有运用的吗?

生:汇报。

我们小组是把笼子里的动物都看做鸡。(板书:全看作鸡)

生:我们是这样想的。假设笼子里都是鸡,应有脚8×2= 16只,比实际少了26—16=10只,一只兔少算2只脚,列式为:4—2=2只,所以能算出共有兔10÷2=5只

鸡就有8—5=3只。(生说师板书计算过程)

师:这位同学说的你们听明白了吗?结合算式进行明理。明确每一步算式各表示什么意义。

师:这种方法都明白了吗?结合课件图画进行解释质疑。

师解释:刚才我们把笼子里的动物都看做鸡(课件图画上显示)那么笼子里共就应该有多少只脚?

生:16只。

师:实际上笼子里有26只脚,怎么会少了10只脚呢?(课件显示)

生:每只兔子少算2只脚。

师:一共少算10只脚,每只兔子少算2只脚,所以有5只兔子,3只鸡了。

师:把笼子里的动物都看做鸡,你们会算了,要是把笼子里的动物都看做兔,(师板书:全看作兔)又该怎样思考呢?你能参照前面的方法自己试着做一做吗?

生:试做。

师:刚才已经假设都是兔的同学,再按假设全是鸡的情形算一算。

生:练做。

师:谁来说说假设全是兔该怎么算?

生:假设笼子里都是兔,就应有脚8×4=32只,比实际多了32—26=6只。一只鸡多算2只脚,4—2=2只。就能算出共有鸡6÷2=3只。兔就有8—3=5只。(生说师板书计算过程。)

师:你们也都算上了吗?师解释:要是都是兔的话,就有32只脚,而实际有26只脚,为什么会多出6只脚呢?(课件示)

生:每只鸡多算2只脚。

师:一共多算6只脚,每只鸡算2只,所以有3只鸡,5只兔。

师:还有运用其他方法的吗?

师:同学们看,通过上面的探究学习,我们共找到几种解决鸡兔同笼问题的方法?(三种)哪三种?(列表法,方程法,假设法)你们能说说这三种方法各有什么特点吗?

生汇报:列表法适合于数据小的问题,数据大了就不适用了。

方程法思路很简捷,但解方程比较麻烦。假设法,写起来简便,但思路很繁琐

师:那以后我们再解决鸡兔同笼问题时就要根据具体情况灵活选择计算方法。

三、巩固练习

师:现在就请你来解决那道数据较大的问题你们能解决吗?

生:独立解答后全班交流。

师:哪位同学愿意说说你是怎么解决这个问题的?

生:汇报不同的算法。(学生边汇报边把计算方法展示在实物展台上)

师:刚才我们用自己的办法解决了这个问题,你们想知道古人是怎么解决这个问题的吗?我们一起来看一看。(课件示)

师:古人的办法很巧妙吧?如果大家对这种解法感兴趣,课后可以再研究。

师:在一千五百年前,我国的古人就发明出这么的数学问题,一直流传到现在,他们还想出那么巧妙地解决办法,为我们后人留下了宝贵的知识财富,你想对他们说点什么吗?

四、全课总结

师:通过这节课的学习你有什么收获?

生:我学会用……方法解决“鸡兔同笼”问题。

师:今天通过大家的自主探索,找到了多种解决“鸡兔同笼”问题的方法。方程法和假设法应用得都比较广泛。生活中我们还会遇到类似“鸡兔同笼”的问题,比如有些租船问题,钱币问题等。下节课我们就应用这些方法去解决那些实际问题。

板书设计

鸡兔同笼

列表法

方程法假设法

解:设有兔X只,鸡就有2(8—X)只。全看作鸡

4X+2(8—X)=26 8×2=16(只)

2X+16=26 26—16=10(只)

X=5 4—2=2(只)

8—5=3(只)10÷2=5(只)

答:有5只兔,3只鸡。

8—5=3(只)

26—4X=2(8—X)全看作兔

26—2(8—X)=4X 8×4=32(只)

2X+4(8—X)=26 32—26=6(只)

26—2X=4(8—X)4—2=2(只)

26—4(8—X)=2X 6÷2=3(只)

8—3=5(只)

北师大版小学数学五年级上册教案 第9篇

教学内容:

北师大版小学数学五年级上册第一单元。

教学目标:

1、尝试运用“列表”、“画示意图”等方法发现规律,运用数的奇偶性分析和解释生活中的一些简单问题。

2、通过活动,让学生经历猜想结果,举例验证,得出结论的探究过程,并在活动中发现加法中数的奇偶性的变化规律,掌握数的奇偶性特征。

3、让学生在活动中体验研究方法,提高推理能力。

教学准备:一次性纸杯、硬币、课件等。

教学过程环节设计:

一、创设情境,产生认知冲突。

师:同学们,有一位家住在河南岸,以摆渡为生的船夫,想请我代他向同学们提一个问题,不知同学们是否愿意帮这位船夫解决一下呢?

(愿意)

课件出示情境图和问题。

【设计意图】创设情境,让学生产生认知冲突,激发学生的学习兴趣,将学生引入到新知探究中来,调动学习的积极性。

二、分组活动,动手操作,感受奇偶性,建构数学模型。

1、活动一:

讨论:船夫将小船摆渡11次后,船在南岸还是北岸?

小组合作,教师引导学生尝试用“列表”、“画示意图”等方式探究。小组汇报时,展示表格或示意图,全班交流。

2、活动二:

一个纸杯子杯口朝上放在桌上,翻动1次杯口朝下,翻动2次杯口朝上,翻动10次呢?翻动19次呢?100次呢?

学生动手操作,发现规律,汇报结果。

师:同学们,如果把“杯子”换成“硬币”,你能提出怎样的问题?试着回答这些问题,并用硬币操作验证自己的结论。

3、活动三:

讨论:加法中数的奇偶性与结果的奇偶性。

课件出示填有偶数的图形,奇数的正方形。

小组合作,完成表格(先猜一猜结果,再举例验证)

小组汇报,全班交流。

(师板书:)

偶数+偶数=偶数

奇数+奇数=偶数

偶数+奇数=奇数

【设计意图】让学生通过活动,经历加法中加数与和的奇偶性特点。培养提出问题,猜想结果,再实践验证的数学习惯,发展学生主动探究的能力。注重学生相互之间的交流,创设自主、合作、探究的数学学习课堂,让学生经历数学模型建构的全过程。

三、运用模型,解决问题。

1、判断下列算式的结果是奇数还是偶数。

10389+20**:11387+131:

268+1024:46786+25787:

6007+8997:

2、有3个杯子,全部杯口朝上放在桌上,每次翻动其中的两只杯子,能否经过若干次翻转,使得3个杯子全部杯口朝下?你手上只有一个杯子怎么办?……(学生小组合作)完成后,汇报反馈。

3、数学游戏。规则如下:用骰子掷一次,得到一个点数,以A点为起点,连续走两次,转到哪一格,那一格的奖品归你。谁想上来参加?……(学生玩游戏。)这样玩下去,能获得奖品吗?为什么?

【设计意图】采用层层推进的方法,让学生学会运用所学的数学知识,解决生活中的实际问题。学会从生活实际中寻找数学问题,能运用数学知识分析并解决生活中的数学问题。培养学生的数学应用意识,提高学生的数学综合素质。

四、课堂小结,课后延伸。

1、说说我们这节课探索了什么?你发现了什么?

2、如果将4个杯子全部杯口朝上放在桌上,每次翻动其中的3只杯子,能否经过若干次翻转,使得4个杯子全部杯口朝下?最少几次?

板书设计:

数的奇偶性

偶数+偶数=偶数;

奇数+奇数=偶数;

偶数+奇数=奇数;

推荐访问:

相关文章:

Top